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NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1666

A GENERAL DIGITAL COMPUTER ANALYSIS OF
STATICALLY INDETERMINATE STRUCTURES?

By Paul H. Denke

SUMMARY
Sy

The application of high speed digital computers in the rational analysis of
statically indeterminate structures, and the significance of this application in
airframe design, are discussed.

The matrix formulation of the force method of analysis is reviewed, and the
programs which have been produced to generate the matrices and solve the equilib-
rium and continuity equations are described. These programs are general enough
to apply to any linear discrete structure.

Numerous comparisons between analysis and experimental results are presented.
In addition, applications of the programs in the production stress analysis of a
large commercial jet transport are described. Applications to thermal stress
problems and low aspect ratio wings are also included.

1This paper, which carried a Douglas Aircraft Company designation of
"Engineering Paper No. 834," was presented before a meeting of the Structures and
Materials Panel of the Advisory Group for Aeronautical Research and Development,
North Atlantic Treaty Organization, in Aachen, Germany, September 17, 1959. Since
the proceedings of the above Panel meeting are not being published, arrangements
have been made with AGARD and the Douglas Aircraft Company for the release of this
paper in its original form by NASA to increase its availability.



NOTATION

In the following definitions, the term "analysis condition" means any com-
bination of external load, thermal deformation, support displacement, etc., tend-
ing to produce stress and deflection in the structure. The matricee are defined
in the order of thelr appearance in the analysis. Matrices which are not in the

list are defined in the tekt.

Matrix Definition gg EEE Matrix Element

Q = [SIJ ] Qij = the ith principal statically determinate force result-
ing from the redundants and the external loads in the jth

analysia condition.

Q =iQ Q = the ith subordinate statically determinate force re-
(] BiJ siJ
- - sulting from the redundants and the external loads in the jth
analysis condition.
X = xiJ 115 = the ith principal redundant in the jth analysis condi-
- - tion.
X' - ris Xa = the ith subordinate redundant in the jth analysis con-
1) i)
- J dition.
r—— —
p = ¢1,) | ¢1J = the ith principal external load in the jJth analysis
- condition,.
¢ - Fb ] ¢ = the 1th subordinate external load in the jth analysis
[} aiJ siJ
- - condition,
mpp - rhppig' mppij = the component in the ith principal degree of freedom
— - of a unit value of the jth principal statically determinate

force.



Matrix
mps mpB
1)
-
pxPP i pxPP
- 1)
P, =P,
ps psi‘1
L.
po -po T
P Ppia
p. s[p, ]
op. opsiJ
m -En
sp Bpié}
Mes msai.j
Py  "IP
Bp Bpid
pxss pxss
et
P, Py
8sp Bpij

Dafinition gg_the Matrix Element

mpB = the component in the 1th principal degree of frecdom
1

of a unit value of the jth subordinate statically determin-

ate force.

Py = the component in the ith principal degree of freedom
ppij
of a unit value of the jth principal redundant.

Py = the component in the ith principal degree of freedom
Pﬂia
of a unit value of the Jth subordinate redundant.

P, = the component in the ith principal degree of freedom
PP1J
of a unit value of the jth principal external load.

P, = the component in the ith principal degree of freedom
Pﬂid
of a unit value of the Jth subordinate external load.

msp = the component in the ith subordinate statically de~
1)
terminate degree of freedom of a unit value of the Jjth prin-

cipal statically determinate force.
me = the component in the ith subordinate statically de-
1]

terminate degree of freedom of a unit value of the Jth sub-

ordinate statically determinate force.

P, = the component in the ith subordinate redundant de-
sp1J

gree of freedom of a unit value of the Jth principal redun-

dant.

) = the component in the ith subordinate redundant de-
ssiJ

gree of freedom of a unit value of the )Jth subordinate redun-

dant.

Py = the component in the ith subordinate external load
epiJ

degree of freedom of a unit value of the Jth principal exter-

nal. load.



Definition of Ebi Matrix Element

P, = the component in the ith subordinate external load
8s
13
degree of freedom of & unit value of the Jth subordinate

external load.



INTRODUCTION

For many years, elementary methods of stress analysis wers used almost ex~
clusively in the design of aircraft structures. These methode involved a number
of assumptions, including especially the assumptions that plane sections of e~
longated members remained plane under the action of bending loads, and that, in
torque, sections were free to warp. In many parts of the airframe these assump-
tions were, and are, completely Justified by the nature of the structure and the
loading. In other places, the assumptions did not apply, as at the roots of
wings, or in the regions of fuselsge cutouts. In such areas, other assumptions,
conservative and often overlapp’ung to ensure safety, were made. Occasionally a

more precise analysis was perforuenl; but such occaslons were rare.

Actually no other recourse was possible, because the extensive use of pre-
cise methods required computing fucilities which did not exist. Such facilities,
however, are now available. To appreciate the advance which has been made in
the art of computation, consider the fact that about twenty seconds are required
to multiply two seven diglt numbers on a desk calculator, whereas a large auto-
matic computer can multiply 10,000 pairs of such numbers per second. These fi-
gures represent an increase in computing power on the order of 200,000 t 1. On

a cost basis, the expense of computing has decreased on the order of 5,000 t 1.

The introduction of matrix algebra into structural analysis has facilitated
calculations also, by converting what was formerly a complicated mathmatical pro-

blem into a systematlc procedure.

The result of these improvements is that the use of advanced methods in
ptress analysis is now a practical undertaking. The question is, to what extent

ghould these methods be applied.

Figure 1 shows the results of & test run at NASA on a cylindrical shell sup-
ported at one end on a rigid foundation, reinforced by circular rings, and carry-
ing a radial load at ihe free end. The figure shows the longitudinal tensile and
compressive stresscs in the shell, as determined from test, as computed by ele-

mentary theory (My/I), and as computed by rigorous methods. The filpure shows that



the maximum bending stress at statlon 45 frame as computed by elementary theory
is in error by a ratio of almost 3.6 to 1, whereas the error resulting from the
rigorous computation is only 10%. Notice also that a secondary maximum occurs
at the so called "neutral axis" where the stress is supposed to be zero. Even
at the rigid support, where the section 1s forced to remain plane, the error in
My/I 1s still 2.2 to 1. This structure 1s not an isolated case; it is typical
of many parts of the eirframe, and there are places in actual structure where
errors resulting from elementary analysis may be larger, because of the exis-

tence of cutouts or other conditions.

The results of Figure 1 are well confirmed, inasmuch as they were obtained
independently by Jensen of the Gruman Aircraft Company and published by him in
reference 5. These results cannot be ignored or dismissed; they are facts, and

must be considered in any assessment of structural analysis methods.

What is the sipgnificance of the errors involved in the use of elementary

methods?

Structure analyzed by rough methods and not thoroughly checked by a care-
ful testling program can contain large stress concentrations. These concentra-
tions can produce metal fatigue and cause the structure to have a short life.
Much importance has been attached, Justifiably, to the effects of small scale
stress concentrations around bolt holes, tool marks, small radius flllets, etc.,
in reducing fatigue life. Perhaps not enough emphasis has been given to the im-
portance of %gzgg_gsgig-stress concentrations that are not revealed by rough
analysis methods. Obviously, an unconservaetive error of 3 : 1 or more in the
computed stress, if undetected, must lead to a short lived structure. In such
& case no amount of attention to design details, important as they are, can pro-
duce a fatigue resistant component. The possibility exists that many of the fati-
gue troubles experienced in the operation of present day aircraft have resulted
from the use of elementary stress analysis methods where they did not apply.

These large scale stress concentrations can also cause failure under the
action of a single load, even though yielding tends to alleviate the condition.

The consequences of such a fallure need not be emphasized.

If, as is normally the case, a thorough testing program 1is undertaken, then



all stress concentrations of importance can be discovered and eliminated. How-
ever the cost of building, instrumenting, and testing full scale components 1s
very high, even compared to the rental of a large computer. This testing ex-
pense continually increases as the demand for higher performance vehicles re-
quires the working of metals to higher operating stresses, the use of unusual
configurations, and the ability to withstand severe environmental conditions.

The testing of large components and entire airframes at high temperature will be
an especlally expensive procedure, hecause of the large power requirements to
heat, as well as to cool, the specimen; the complicated apparatus needed for tem-
perature control; the gpecialized instrumentation, such as high temperature strain
gauges required for measurements; and the additional engineering required to plan
the test. The new methods of stress analysis can play a very important part in

helping to keep these testing expenditures within ressonable limits.

Finally, the financial risk involved in a large aircraft project 1s suffl-
clent to warrant a double check through both test and accurate analyslis to make

sure that no defective conditions exist.

The conclusion is drawn, therefore, that the extensive use of advanced digl-
tal methods of stress analysis is Justified at the present time, and that these

methods will become even more important in the future.

SCOPE OF THE PAPER
The paper contains & general description of the method and sections on the

matrix formulation, computer programs, analysis procedures, comparisons with test
results, and applications. For a non-technical description of the work, the sec-

tions on the method, test results, and applicatlons are recommended.,
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THE METHOD

In the following discussion, the term "discrete structure” denotes a struc-
ture composed of a finite number of members connected at a finite number of
Joints. The term "linear structure" denotes a structure for which the relation~
ships betwesn external load, support displacement, internal force, and deflec-

tion are linear,

Alwost every procedure for the analysis of statically indeterminate struc-
tures can be clessified as either a “force" or a "displacement" method. In the
force motbod, the unknown internal forces are calculated first; the displace-
ments second. In the dieplacement method, the displacements are calculated be-
fore the forces. Argyris [1]* has discussed the two methods and shown the existe
ence of an analogy between them.

The capabilities of the digital computer allow sither of the basic methods
to be programmed in its simplest and most general form. In the past, a great
many variations of the basic methods have been employed. One reason for such
diversity has been the need to avoid extensive calculation by tailoring tha
method to fit the structure. However, the development of the digital computer
has altered the situation. Extensive calculations now can be performed rapidly
and economically. Therefore, a return to basic principles is feasible and,
furthermore, the computer program designed to utilize these principles can be

general ig igg.agglicationa.

Some of the advantages to be galned from a basic, general approach arq re-
duced programming time, reduced training of personnel, the added insight that
results from the application of basic principles, and the reduction of errors
that results from familiarization in the use of a single mathod.

The method of analysis described in this raper 18 a matrix formulation of
the eqpilibrtum equations and the Maxwell -Mohr equations for statically indeter-
minate structures. This formulation was preaented at a mesting of the Second
U.8. Congress of Applied Mechanics in June, 1954 [é]. The use of matrix algebra
is now recognized as essential in preparing the structural analysis problem for
the computer. Langefors [3] and Wehle and Lansing [U] had previocusly published

% Numerals in brackets indicats referencea,



matrix formulations of Castigliano's Theorem. However, the Maxwell -Mohr equa=
tions are a little simpler in form because they do not involve partial deriva-
tives. Also, the applications to thermal stress and nonlinear problems are

more straight-forward.

In the Maxwell-Mohr method, which is a force method, the structure is cut
to create a statically determinate structure or basic system. The members of
the statically determinute structure may be simple elements, or they may them-
selves be complicated statically indeterminate structures. (In fact, even 8o
called simple elements are actually infinitely redundant ). After cutting, values
of the redundants are chosen such that the deflections at the cuts resulting
from external loads, support displacements, element thermal and other deforma-
tions, and from the redundents, are zero. The redundants cen be elther forces
existing at the cuts, or linearly independent combinations of these forces, as
Argyris has pointed out [L]. The conditioning of the simultanpeous equations in-
volved in solving for the redundants can be improved either by cutting on the
basis of physical reasoning so that the forces at the cuts are small compared
to other forces in the structure, or by linearly transforming the redundants
on the basis of the known orthogonal solution of & geometrically regular struc-
ture which bears a resemblance to the structure under cousideration. The use of
statically indeterminate substructures as elements, which have been previously

analyzed, also improves the conditioning.

The present method comprising the equilibrium»and‘Maxwell-Mohr equations
and the associated digital computer program is applicable to any linear discrete
structure, and through iterative techniques to certain nonlinear structures as
well. The method applies not only to various partes of the alrframe structure
such as the wing-fuselage intersection, the tall-fuselage intersection, the cock-
pit enclosure, the area surrounding a fuselage cut-out, & low aspect ratio wing,
and so on, but also to many types of structures encountered in civil englineering

practice.

This generality was not designed into the method to show the versatility
of the computer, but because generality is necessary if the analyst is to have
the tools that he needs to deal with the problems arlsing in airframe and missile

design. Thus, many important airframe components have no recognizable geometric



regularity such as would permit the use of simplifying but restrictive assump~
tions, or the application of results from elasticity theory. Figures 2a and 2b,
which show a pylon-wing intersection, illustrate a structure of this kind.

MATRIX FORMULATION

The matrix formulation 18 preceded by a set of equations in vector notation
which permit the calculation of the elements of the equilibrium matrices.

Equilibrium equations for a staticelly determinate structure are written by
setting the sum of components of forces in a given direction and the sum of mo=-
ments about a given axis equal to zero. In general, such a set of equations can

be expressed in matrix notation in the form MQ + P § = 0. In this equation, Q

"generalized force" is

i8 a matrix of unknown generslized forces where the term
understood to mean either a force or a moment. The coefficlents of the unknown
forces Q are contained in M. These coefficlents, called generalized components,
are force or moment components in certain directlons or about certain axes of

unit values of the generalized forces.

The matrix P 1s a matrix of external loads acting on the structure, while P

contains generalized components of unit values of these external loads.

The structure to be analyzed is broken into frea bodies, and equilibrium
equations are written for each body. The equations are numbered consecutively
beginning with one, and to each equilibrium equation there is asssigned a corres-
vondingly numbered unit vector coinciding with the direction in which forces are

summed or about which moments are takcn. These vectors are called depgree of free-

dom vectors, because only as many of them may be assigned to a free body as the
body has degrees of freedom if the corresponding equations are to be independent.
Flgure 3 shows a free body dlagram with forces and degree of freedom vectors re-

prescnting equations of equilibrium. Degree of freedom vectors are shown dotted.

The existence of two kinds of equilibrim equations and two kinds of generale-
ized forces means that there can be four kinds of generalized components. Fqua-
tions 1, 2, 3, and 4 of Table 1  provide the method for calculatin these quan-
titico. In these equations, Ti is a unit degree of frecdom vector (elther transe

1atinpal or rotational), and FJ 1s a unit generalized force (either a forea or o

1C



moment ). The symbol mi‘1 denotes the corresponding generalized component. In the
rotation-force equation, ry is a vector joining the origin to any point on the

lins of action of Ti’ and FJ i@ a similar vector Joining the origin to any point
on the line of action of FJ. In equations (1) to (4), the frame of reference is
assumed to be a right-handed rectangular Cartesian coordinate system, and rota-

tions and moments are represented by vectors according to the right-hand rule.
After the statically indeterminate structure is cut, three kinds of forces
are seen to be acting upon, or in, the determinate structure. These forces are
the external loads, the redundants, and the unknown internal forces, referred to
TABLE 1

BUMMARY OF EQUATIONS

GENERALIZED FORCE COMPONENTS

Translation-force myy o= T, * FJ (1)
Rotation-force my o= Ty [}rd-ri) x Fél (2)
Translation-moment my = 0 (3)
Rotation-moment myy o= T, F‘1 (4)

THE X TRANSFORMATION MATRICES

Kn = -ms;l Psp (5)
K, =-P, p, (6)
88 8p
-1
XK, = -, P (7)
88 sp

M = m_+m K (8)
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P, = p +p X (9)

+p, K (10)

STATICALLY DETERMINATE FORCES RESULTING FROM UNIT REDUNDANTS AND UNIT EXTERNAL

LOADS
q = Hle (31)
qQ, = P (12)

ELEMENT FORCE AND STATICALLY DETERMINATE REACTION MATRICES

fy = Ng +H (13) T ™ N. q
f, = Nq +H (14) o = N.q
f, = £, C, (15) oA ™ Tpo Ca
REDUNDANTS
T T
b = fy Df, (19) By = Ty ep
B, = fX (Df_ + D) (20) B = A 41l
X0 x o DFo xR %: DxAD
-1
X =~ B (on’b"f’x‘r'bxn) (23)

ELEMENT FORCES AND STATICALLY DETERMINATE FORCES

p.rxx«rfop (24)
Q = q X + q P (25)
DEFLECTIONS

- T T T T
A (fAD+DAF)F+(tADFo+DAO)¢+(fAeT+eAT)-rmAD

1e

(16)

(17)

(18)

(21)

(22)

(26)



or

T T T T T
A = (FAD + DAF)F' + (FA Dpo * DAo)gs + (FA e + eAT) -R, A - XA (21)

hereafter as statically determinate forces. The redundants are also unknovwn, of
course, but the statically determinate forces resulting from unit values of the
redundants are calculated, and these results are used in the continuity analysis.
Calculating the statically determinate forces resulting from unit values of the

external loads is also expedient.

Each of the three sets of forces - external, redundant, and statically de-
terminate - is further divided into two subsets called principal and subordin-
ate forces. The subordinates are forces which can be expressed in terms of the
principals by a preliminary calculation performed on the machine,after which the
subordinate forces are eliminated from the problem. The principal forces are the
forces that remain. The purpose of this elimination is to conserve machine ca-

pacity.

The cholce of subordinates shauld be such that they can be expressed easily
in terms of their principals. For example, consider the shear panel of Figure kL.
The forces on this panel form a self-contalned system, and any three can be writ-
ten in terms of the fourth. Thus QBl = Q1 a/b, Q32 = Ql’ and QB3 - Ql a/b. The

force Q1 is the principal, and Qsl’ Qsz’ and Qs3 are subordinates. By thls device

often half of the forces can be eliminated from the problem.

The next step in the analysis, then, 18 to designate and number consecutively,

beginning with one, each of the following six sets of forces: principal and sub-
ordinate statically determinate forces, redundants, and external loads. Matrices
of these forces are denoted respectively by the symbols Q, Q, X, X, 9, and ¢s.
Filgure 3 illustrates a typical free body diagram with the forces numbered. On
this diagram, only statically determinate forces are shown. Redundants and ex-
ternal loads are shown on separate sheets to avold confusion. Principal force

pumbers are enclosed in parentheses; subordinate force numbers are not.

After the principal and subordinate forces are chosen, so-called subordinate
degree of freedom vectors corresponding to equations of equilibrium are assigned,
80 that the subordinate forces can be calculated in terms of their principals.

15



These vectors are shown in the figure by dotted arrows with index nunbers not en-
closed in parentheses. Finally, principal degree of freedom vectors are assigned
to permit the calculation of the principal statically determinate forces. The
principal degree of freedom vectors are indicated by dotted arrows with index
numbers enclosed in parentheses. In general, four sets of degree of freedom vec-
tors are assigned as follows: principal degrees of freedom, and subordinate

statically determinate, redundant, and external load degrees of freedom.

The equilibrium equations can now be written, in matrix notation, in terms

of the six sets of forces acting on the free bodies, as followst

m o mps Py P, P, P, Q = 0 (28)
PP ps PP ps
msp B Qa
px px X
8sp 88
P P X
i on 088_ 8
b B—

The forces acting on the free bodies are contained in the post multiplier;
the generalized components are contained in the premultiplier. The significance
of the partitions mpp, mpa’ etc., is given in detail in the table of notation.

All of the generalized components are computed by equations 1, 2, 3, and k. The
null partitions in the generalized component matrix result from choosing subordin-
ate forces in such a way that they always form small self-contained eystems with
their principals.

Equation 28 is expanded as follows:

1k

m +m
rp q p

s % * Py

p

X+p

X
P8

X

+po

pp

P+,

ps

p, = ©

(29)



me-o-m Q w 0

8 88 B
Py X+ Py XS =0
8p 88
p, P+p, B, =0
8p T
. -1
't QW = s Mep ?
-1
Xg = By P X
88 8P

The matrices Km, Kx’ and Ko are nov defined according to equations 5, 6, and
T of Table 1.

oo Q = K¢
Xs = Kx X
g, = K, P
Substituting these expressions into equation (29) gives
M+B X+P p = O (30)

where the matrices M, Px’ and Po are defined by equations 8, 9, and 10 of Table 1.
Equation (30) is the principal equilibrium equatilon.

Notice that the matricesm__, P, and p_ appearing in equations 5, 6,
88 88

and 7, must be nonsingular. This nongingularity is obtained by proper choice of
gubordinate degree of freedom vectors. As a matter of computing convenience, the

cholce of these vectors should be such that the matrices LIPS and p, are
88 68

lover triangular, because in this event a very rapid computing program can be used

to solve the equations. Such a cholce is always easy to make, and it has the ad-

ditional advantapge that a lower triangular matrix with nonzero elements everyvhere

15



on the diagonal 1s nonsingular, and well-conditioned.

Taking X = I (the unit matrix) and § = O (the null matrix) in equation (30)
leads to equation (11) of Table 1, where q, is a matrix of statically determinate
forces resulting from unit values of the redundants.

Taking X = 0 and § = I leads to equation (12), where q, 18 a matrix of stati-
cally determinate forces resulting from unit values of the external loads.

Check degree of freedom vectors are assigned to various free bodies of the
structure so that additional check equations are generated. Such equations pro-

vide reliable verification of the calculations up to this stage.

After the equilibrium problem is solved and checked, two additional opera-
tions are performed, before the continuity of the structure is restored. First,
all of the statically determinate forces, tie re’:indents, and perhaps some of the
external loads, are grouped into a single set o foruss, called element forces, to
facilitate calculating deflections. Secori, *lw» statically determinate reactions
are grouped into a separate matrix, to permit calculating the effect of support

displacements.

Element forces are defined in the following way: Consider any element of tha
structure which is capable of undergoing deformation, and therefore of contribut-
ing to the deflection of the structure as a whole. Both internal forces and ex-
ternal loads may act upon such an element, since the possibility of external loads
acting between Joints is not excluded. Certaln forces acting on the element are

designated as element reactions. These element reactions may be internal forces

or fictitious forces, but they must be chosen in such a way that they are capable
of balancing the other forces applied to the element. The remaining internal

forces are designated as element faorces. After element forces for the entire

structure are selected, they are numbered consecutively beginning with one.

For each element force there is a corresponding element deformation. An ele=-

ment deformation is defined as the component of the displacement of an element
force, in the direction of the element force, when the element reactions are un-

displaced parallel to themselves.

16



Figure 5 shows a bending element, with element reactions (indicated thust
—+= ), element forces (Fl’ Fo» F3), and element deformations (el, €ns e3).
Other choices of element reactions, forces, and deformations are possible for

such an element.

The element deformations are given the same index numbers as the correspond-
ing element forces; and a deformation is positive when 1t has the same direction
as a positive value of the corresponding force. The sign convention for element
forces 1s arbitrary, except that the cholce of a sign convention vhich results in

negative off-diagonal flexibility factors (defined later) is not advisable.

Some of the element forces correspond to statically determinate forces;
others correspond to redundants and a few may correspond to external loads.
Therefore, the element forces can be written in terms of the statically determin-

ate forces, the redundants, and the external loads, as follows:

F =M+ X+ HP, (31)

where F 18 a matrix of element forces.

If the element forces have been chosen in such a way that each one corres-
ponds exactly to a statically determinate force, a redundant, or an external load,
and such a cholce should be made, then the matrices N, Hx, and HO contain 1's and
0's, and there will be no more than one 1 in any row or column. Such matrices are
called extractors, because their only function 1s to extract information from

other matrices.

Setting X = I and § = O in equation (31) yields equation (13) of Table 1,
where fx is a matrix of element forces resulting from unit values of the redun-
dants. Setting X = O and P = I ylelds equation (14), where £, 1s a matrix of

element forces resulting from unit values of the external loads.

In the Maxwell-Mohr method, deflections are calculated by applying unit dum-
my loads coinciding in position and direction with the desired deflections. In
the present formulation the assumption is made that & unit externnl losd is ap=-
plied to coincide with every such deflection. Therefore, a matrix fA can be ex~-

tracted from fo’ as in equation (15), where fA is8 a matrix of element forces

17



resulting from unit values of the dummy deflection loads, and CA is a suitable

extractor matrix.

Number the statically determinate reactions consecutively beginning with 1.
Then the statically determinate reaction matrix RD can be extracted from the
statically determinate force matrix as follows:

Ry = N.Q,

where Nr 1s a suitable extractor. Setting X and P equal to I and O in turn leads
to equations (16) and (17), where Ty, 804 ¥y ere matrices of the statically de-
terminate reactions resulting from unit values of the redundants and external loads
respectively. A matrix r_ = of statically determinate reactions resulting from unit

DA
values of the dummy deflection loads is extracted from r,, 88 in equation (18).

The essentials of the derivation of equations (19) to (26), inclusive, have
been given in reference 2. A feature of this derivation is that although it is
based on the conservation of energy, it does not involve elastic strain energy,

80 that the deflection equations are immediately valid for arbitrary element de-
formations, including deformations resulting from thermal gradlents, plasticity,
creep, etc. The derivation is also facllitated by the use of the notlons of ele-
ment reactions, forces, and deformations, as defined above. However, the equations
have been generalized to include the effects of support displacements, the applica-
tion of external loads between Joints, and the calculation of deflections at points

between joints.

The symbol D appearing in these equations denotes the flexibility matrix.
The elements of this matrix represent element deformations resulting from unit
values of element forces. For example, the flexibllity coefficients for the beam
element of Figure 5 are as follows, if shear deformations are not considered;
= L2/2EI, D,, = L/EI,

a a3
Dy L/AE, D, = L /3EI, D,. =D

23 32 33

where L, A, I, and E are the length, area, moment of inertia and modulus of elas-

tieity of the member.

The matrix DFo contains element defn. mations resulting from external loads

18



applied directly to the elements. If loads are applied only at Joints, then DFO
18 null. Figure 6 shows the element of Flgure 5, with an intermediate load.

The followlng elements of the DFo matrix can be derived by elementary methods:

- a? (L-a/3) sin Q/2E1, D, = a® sin af2EI .

= a cos afAE, D
Foa) 33

D
FolJ

The matrix D, _ contains displacements of dummy deflection loads acting direct-

OF
ly upon the element, resulting from unit valu=p of %he ~lement forces, when the
element reactions are not displaced parallel to “asmzzlves. Figure 7T shows tha
element of Figure 5 with an intermediate dwray <dell=ciion load. The elements of

DAF ara as follows:

2 2
- =P (L-b/3)sin§/2m, Dyp =D sinﬁ/zm .

D =D cosP JAE, D
) J2 J3

The matrix DAo contains displacements of dummy deflection loads acting direct-
ly upon the element, resulting from unit external loads acting directly upon thas
element, when the element reactions are not displaced. Figure 8 shows a bending

element subjected to intermediate external and deflection loads. The correspond-

ing element of Déo is as followsy

2
b b (3a-b)
DAo 7E cos @ cosF> + =T sin a sinﬁ if a>b

1

or

2
a_ a“(3b-a
Dpy Fr €08 O cos§ + ——GET—Z sin a sin]B if bYa .

1

The matrix en contalns element deformations resulting from heating, plastic-

ity,creep, ete. For example, suppose that the tensile element of Figure 9 (a) ‘
has been assigned the ith element force, as shown. In (b) the temperature of the
element is increased an amount AT in the jth analysis condition. The thermal de-
r " a LAT, where a is the coefficient of expansion. The

13
matrix elements ep can also represent bending thermal deformations of bare heat-

1

ed unequally on the two sides, or any other kind of a thermal deformation. When

formation is then e

the ep represent plastic or creep deformations, they either must be known, as
i
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they could be in a statically determinate structure, or they must have been com-
puted in a previous cycle of some kind of iterative process.

The matrix e contains displacements of the dummy deflection loads acting

AT
directly upon the element, resulting from heatling, etc., when the element reactions

are not displaced parallel to themselves. Figure 10 shows the element of Filgure
9 with an intermediate dummy deflection load. The intermediate thermal deformation

is e = a aAT.
amiJ
The matrices AD and Ai contain displacements of the statically determinate
and redundant reactions, respectively. The elements of these matrices are posi-
tive when the corresponding support displacements have the same sense as positive

values of the reactions acting upon the structure.

Equation (27) provides an alternate, more accurate, but somewhat more cumber-
some means of calculating deflections. 1In this equation, FA’ IA, and RDA are ma-
trices containing element forces, redundants, and statically determinate reactions,
respectively, in the uncut structure resulting from unit values of the dummy de-

flection loads. The equation can be shown to be mathematically identical to equa-
tion (26).

COMPUTER PROGRAMS

The calculations are performed on an IBM 709 computer. The only "709" pro-
gram written specifically for the Maxwell -Mohr method is called "Matrix Generation".
This program accepts, as input, coordinates and directions numbers which define the
degree of freedom and force vectors appearing on the free body diagrams. The di-
rection numbers have previously been computed from the coordinates by an auxiliary
program. Thus, the only numerical input prepared by the analyst for this phase isg
a table of coordinates. The program then generates the elements of the matrices

» Py s Py » Py, »m_, N

m P » P » P » P , and p by means
P8" "Xpp' ¥ps %pp Ops PP B8 Xy Xgg %% s

of equations (1) to (4) of Table 1.

m
PP’

All the rest of the calculations, as required by equations (5) to (26), are
performed with the ald of a general purpose interpretive routine called the "Tape
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Matrix Compiler". This routine essentially permits the analyst to write his own
programs for matrix operations. Matrices of member flexibilities, loads, thermal
daformations, and support displacements, and certaln extractor matrices, are in-
put. The machine outputs the unknown forces and deflections of the structure.

The compiler 1s also used to perform additional operations not covered by
equations (5) to (26). These auxiliary operations can include transforming the
redundants to improve conditloning, and the modification of member flexibilities,

including the complete removal of members.

The Joining of structures to form larger structures ie accomplished by the
basic program, comprising equations (1) to (26).

A program under development, called the "Structure Cutter", permits the
machine to select its own redundants optimized to yleld well-conditioned equa-
tions. The capabilities of the Btructure Cutter are briefly discussed in a later

paragraph.
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ANALYSIS PROCLDURLS

IDEALIZING THE STRUCTURE

The actual structure is replaced by an idealized discrete structure
consisting usually of bars and panels. In general the bars can carry tension,
torque, two components of bending moment, and two components of shear. The
panels can carry shear and biaxial tension. In the most generally useful
jdealization, bars are considered straight between Jjoints, end nanels carry
only shear. However panels are permitted to be warped. Thias allowance for
panel warping improves the accuracy of the analysis, because joints of the
jdealization can lie on the true contour of the actusl structure. Furthermore,
warping simplifies the input, because there are few if any derived coordinates.

The meaning of the term "derived coordinates" 1s explained later.

Panels should be rectangular if possible, trapezoidal if not rectangular,
or at least nearly trapezoidal. Panels that almost come to & point should be
avolded. Triangular panels should probably be removed, leaving & trianpgular

framework of bvars.

A problem of structural idealization concerns the question of the attachment
of shear panels to bars. Two methods of attachuent are considered, In the first
method, panels are attached to bars at the midpoints of panel edges, as shown at
"A" of Figure 12. In the second method, the attachment is continuous, as shown
at "B", and the essumption is made that load in the adjacent bars varies linearly

between jolnts.

Figure 11 shows & set of skin-stringer pancls, rigidly supported at infinity.
The panels have symmetry about the X-axis, the stringers are equally spaced and
have constant area, all the stringers are equally stiff, and the sheet thickness
15 constant. Transversly the panels are assumed to be stiffened by a continuum
of infinitely rigid bars. Axial loads are appllied to the #3 stringers at X = O.

The exact solution of the stringer loads aend pancl shear flows in the struc-
ture was obtained. The structurc vau also analyzed by the Maxwell-tlohr method,
for the idealization shown in ¥igurc 12. At X = 80, conditions are ecuentially
the same as they are at infinity.



Two digital solutions were obtained. In the first solution, pancls were
assumed to be attached to bars at panel mid-points only. Under this assumption,
the load in a bar is constant, but can jump abruptly at Jolnts and panel mid-
points. The flexibility matrix corresponding to this assumption is dinponal.

In the second solution the load in the bar is assumed to vary linearly

between Joints. The flexibllity matrix in this case 1is not diegonal.
The comparison of the three solutlions for stringer loads 1s given in Table
2. The results for methods 1 and 2 are followed by the percent errors in pa-

rentheses. The comparison for shear flows is given in Figure 12.

Table 2 Stringer loads

Stringer X
Fumber 0 20 4o 60 80

Exact 0 470 .1889 .1987 L1596
Method 1 o (o) A6 (-2%) L1869 (-1%) 1970 (-1%)  .1988 (-0%)
Method 2 o (o) L2344 (-9%)  .1885 (-0%) .1986 (-0%)  .1996 ( 0%)
Exact 0 .2015 .2030 .2007 .2002
Method 1 o (o) 1925 (-4%)  .2020 (-0%) .2008 ( 0%) .2004k ( 0%)
Method 2 o (o) 1864 (-8%) L2060 ( 1%) .2005 (-0%) .2001 (-0%)
Exact 1.0000 +3031 .2152 .2029 .2005
Method 1 1.0000 (0) .3258 (7%) 2221 ( 3%) L20uk (1%) L2017 (1%)
Method 2 1.0000 (0)  .3584 (18%) .2110 (-2%) .2018 (-1%) .2004% (-0%)

The comparigons show that the "panel mid-point method" gives greatest accuracy.

The fact should be noted however that this method gives somewhat less accuracy than

the second method for the deflection of a cantilever thin web beam, idealized as
shown in Figure 14, Here the accuracy of the deflection computed by the first
method depends on the number of bays and is satisfactory for four bays. Both

methods give correct cap loads and shear flows for any number of bays.

Since the "panel mld-point method" is the simplest, and scems to be the
most accurate, at least for stresses, it appcars to be preferable to the sccond

method.



A distinction is made between "defining" and "derived" coordinatcs. This
distinction is demonstrated in Fipgure 15, which shows a pin-Jolnted truss lying
in the X-Y plane. Member AC is assumed straight. The geometry of the truss
therefore may be considered to be defined by the X and Y coordinates of polnts
A, B, and C, and the X coordinate of D. The coordinate YD can be derived from
XD on the assumption that AC is straight. The coordinate YD i8 therefore a

derived coordinate, and the others are defining coordinates. Defining coordi-

nates should be input with an accuracy of about six decimal places to avold
contradictions between them and the assumrtlons upor whilch they ere derived,
within the machine. Because of this accuracy requirement, derived coordinates

should be avolded.

A warped shear panel cannot be in equilibrium under the action of shear
forces alone, as Figure 16 demonstrates. The shear forces shown in the plen
view all have downward components in the edge view., The panel can be put into
equilibrium with the addition of two forces at opposite corners, as shown in
the perspective view of Figure 17. Thils figure also shows principal and sub-
ordinate force numbers, and subordinate degree of freedom vectors, which can
be assigned to permit the machine to calculate the subordilnate forces in terms
of their principels. The warping forces are approximately normal %@ the panel.

The reactions to the warping forces are assumed to act on joints.

Many structures contain warped panels which cannot be flattened in the
idealization without seriously compromising the accuracy of the solution.
Furthermore, the flattenlng process 1s usually more trouble than eccounting for

the warping.

CUTTING THE STRUCTURE

Box structures, like wings, composed of bars in tension and panels in shear,
tend to be better conditioned, because they are stiffer, than fuselage-type
structures which contain flexible rings. For structures which are inhcrently well
conditioned, and yet which may offer cutting difficulties because of unusual

features, the "building method" 1s a useful procedure.

In the bullding method, a unit of the structure known to be statically
determinate 1s sclected, and the structure is built from this unit by adding
other stotically determinate units. The mcmbers which are omitted in the process

are the redundanto.
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Figure 18 (a) shows the uncut structure, (b) and (c) 8 staces in the
building mcthod and (d) shows the final cut structure. Two ponels and a re-
action are redundant. In the process, the use of "temporary reactions" may

be expedient. These reactions can be replaced by the actual reactions at the

coupletion of the process.

The following expression is convenlent for checking the degree of redundance

of a structure corposed of shear panels and axially loaded bars:

n=bY+p+r ~ 232 - 333, where b = the number of uncuit bars,
P = the number of uncut panels,
r = the number of reactions,
32 = the number of two constraint Jjoints,
= the number of three constraint joints,

For a statically determinate structure, n = O. The expresslon, with n = 0, is
a necessary but not a sufficient condition for static determinacy. For the

structure of Figure 18, n = 28 + 14 + 6 = 2x 0 - 3 x 16 = O.

DIAGRANS

The following dlegrams are utilized: (1) a general view of the idealized
structure with the joints numbered consecutively beginning with one, (2) a set
of free body dlagrams, and (3) diagrams showing the element forces.

The free body diagrams have been described in the section on matrix formu-
lation, and Figure 3 shows a typical diegram for statically determinate forces.
The only feature of these diagrams not alrecady mentioned are the free body numbers,
shown enclosed in squares in Fipure 3. The machine uses these numbers to assoclate

forces with thelr corresponding degrees of freedom.

The element force diagrams show element reactions and element forces, the
latter being numbered consecutively beginning with one. The statically determi-
nete forces and redundants should be chosen so that each element force is identl-
cal with either a statically determinate force or a redundant, so that the elements

of the N and Hx matrices consist only of 1's and O's,

I0AD SHEETDS
Duta is input on three different formats, as follows: the coordinate table,

the vector deserilption tables, ond the matrix load sheet.

N
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The coordinate table is a list of Joint numbers with thelr assoclated X,
Y, and Z coordinates. With the aid of an auxiliary program, the machine com-
putes a table of direction cosines of vectors deflned by point palrs of the
coordinate tables. The point pairs msre specified by the analyst on a separate
load sheet. The auxiliary program can also compute the direction cosines of a
vector defined as the cross product of two other vectors each in turn defined
by point pairs deslipgnated by the analyst. The vectors for which dlrection
consines are calculated include most, or all, of the vectors which appear in
the analysis. Direction numbers of additional vectors can be hand input if
necessary. The machine sorts the computed directlon cosines according to the
defining points, and assigns each set of X, ¥, and Z direction cosines a serisl

number,

The vector description tables are of two types. On the type 1 table the
followling information 18 input for each vector: the vector serlal number; the
type, whether angular or linear; the sign; the number of the free body upon
which the vector acts; the number of a point on the line of action of the vector;
and the serlal number of the direction of the vector. Each vector 1s listed
only once in the type 1 load sheets. However most of the force vectors eppear
more than once on the free bodles, and an entry must be made each time a vector
appears. These additlonal entries are made on the type 2 tables which have
provision only for vector serial numbers, signs, and fres body numbers. The
type 1 and type 2 tubles are filled out for the four kinds of degree of freedom

vectors, and the six kinds of force vectors mentioned previocusly.

Thie matrix load sheets contain spaces for the matrix elements, and for
the row and column numbers corresponding to each element, The matrices N, HX’
Ho, CA’ D, DFO’ DAO’ eT’ eam’ AD, AX and ﬁ are input on these sheets., Occasion-

ally some elements of the Ko matrix also are hand input.

Ordinarily only the matrices N, HX’ Ho, CA’ D and ﬁ are required, and of
these matrices N, HX’ Ho and CA should contain only 1's and O's. Thus the only
forunts which contain numcrical input are the coordinate table, the flexibility
matrix D, and the load matrix 4. Therefore a problem which has been set up for
a glven set of coordinates, floxibllities, and external load can be solved for

ney convlinates, {lexdbilitics, cnd loads by Inputting only three tebles. These



tables represent the minimum possible input for the problem. Therefore a given
set-up, say for a fuselage sectlon, can be used many times for a varlety of

fuselage analyses, and the set-up essentially becomes, 1in itself, a general

program for fuselage problems,

CHECKS ON THE OUTPUT

The equilibrium checks, made by writing extra equations of equilibrium,
have been mentioned. Two other important types of checks are the simultaneous
equation checks and the symmetry checks. Simultaneous equation checks are made
on the solutions of both the equilibrium and the continuity equations by sub-
stituting the results into the original equations. A symmetry check 1s made on
bxx’ which must be symmetric by Maxwell's law. A similar check ie izade on the
deflection matrix A, for rows and columns which correspond to identical unit

deflection loads and external loads.

IMPROVING THE CONDITIONING

jaturally every effort should be made at the beginning to secure well-
conditioned equations. The familiar rule 1s that redundants should be chosen
which are small compared to other forces in the structure. The rule can alsc
be stated as follows: in the cutting process the structure should lose as
1ittle stiffnecs as possible. For example, a good choice of redundants for a
fuselage frame is the ingsertion of three hinges. A complete cut at one point

leaves the frame very flexible.

A second device 1s to break the structure into statically indeterminate
gubstructures.. The substructures are taen cut and analyzed, after which they
are joined to form the original structure, as discussed in a later paragraph.
At each stage of this process the redundants ere relatively few in number, and

generally well conditioned.

A third device 1s the utilizatlon of orthogonal solutions derived from the
theory of elasticity for gecmetrically regular bodies which resemble the struc-
ture at hand. This process has been thoroughly discussed by Argyris.

JOINING SUBSTRUCTURIG
In this process the structure ic broken, by cutting redundants, into sub-

structures, which rcmain joined together by other forces which can be computed



from statics. Thus the cut structure can be regarded as n statically determinate
structure consisting of statically indeterminate elements. Figure 19 shows a
DC-8 wing-pylon intersection which has been broken into two substructures by this
method. The figure shows statically determinate forces only. The other Joining
forces, which are redundants, are shown on a scparate sheet. Figures 2z and 2b

show details of the idealized substructuresn.

After the structure has been cut into substructures, each of the substiructures
is also cut and analyzed in detail, for uni%t values of the external loads, which
include the Joining redundants. In particular the deflections of the substruc-
tures, at points where they have been cut apart, are cnlculated. The analysis of

each substructure utilizes the baslc program anl the eguations of Table 1.

After the substructures are analyzed, they are joined to form the original
structure by another epplicatiocn of the basic program and equations. In this
process free body diagrams, like fipure 19, are drawn. [Element force diagrams
are also prepared. Element reactions for the substructures, considered as
elements of the original structure, must be identical with the statically de-
terminate reactions that were utilized in the detail analysis of the substructures.
This requirement is necessary because the elements of the flexibility matrices
D, DFO’ DAF’ and DAO are extracted from the deflection matrices A, calculated for
each of the substructures. The extraction 1s accomplished with the aild of ex-

tractor matrices consisting of 1's and O's and the tape watrix compiler.

DISCONHZCTING AND FLEXIBILITY MODIFICATION

?he technique discussed by Argyrils [l] , Michielsen and Dijk [13] , and
Best Llﬁ} , for modifying flexibilities with the aid of arbitraery element defor-
mations after the redundants have been computed, has two important applications.
First the effect of changing the sizes of a few members upon the stress distri-
bution can be determlned with a minimum amount of calculation. However the method
becomes inefficient when the number of elements to be modified becomes equal to
or greater than the number of redundants. In thls case a new flexibility matrix
should be input. Second, the notion of fi1lling in cut-outs, like fuselage doors,
and later removing them, is lwmportant, because the process of cutting the struc-
ture 18 greatly simplificed when cut-outs are not present, and the equations are

likely to be better conditioncd, However, more machine capacity is required.



Members can also be removed by moking them more flexible, say on the order
of 1,000,000 times, than other members of the structure. This approach only
works when the forces being reduced to zero are redundants. Otherwise the

continuity equations tend to be linearly dependent.

THE STRUCTURE CUITIR

A method has been devised for having the machine cut the structure. In
this approach no distinction is made between statically determinate and re-
dundant forces when the problem is set up. The number of unknowns in the equi-
1ibrium equations generated by the machine then exceeds the number of equations.
By & process of selecting columns of the rectangular matrix of coefficlents of
unknowns in these equations, the machine chooses a well-conditioned square matrix.
The unknowns which correspond to the columns of this matrix are the statically
determinate forces, and the remaining unknowns are the redundants. The choice
of columns is influenced by weighting factors which reflect the stiffness of

the members of the structure.

Figure 20a shows a statically indeterminate structure. Fipgure 20b shows

the same structure as it was cut by the machine.

SIMPLIFIED INPUT

A nev program called the "Redundant Force Method" is being developed. This
program 1s basically the same as the method described previously, but the new
method incorporates a number of improvements which eliminate the need for pre-
paring free body diagrams, and reduce the input to a minimum. In effect the
machine automatically cuts the structure (utilizing the "Structure Cutter")},
breaks the statically determinate structure into free bodles, writes and solves
the equations of equilibrium, and writes and solves the equations of continuity.
A certain penalty in additional machine time i1s involved, however the new program
is expected to be especially useful in the rapld solution of preliminary design
problems for which a rough idealization is satisfactory, and which cannot be

solved without a large error by elementary methods.

NONLINIZAR PROBIIILS
Although tais subject is beyond the scope of the present paper, some mention
should be made of the applications to the nonlincar problems involved in calculating

the effects of plasticlty und creep upon the behavior of the structure. The approach



to these problems has been through the use of varilous step-by-step, or iterative,
proccdures. In all such procedures the question of convergence 1s of primary
importance, because the rate of convergence can be fast or slow, or the process
can be divergent. Rapild convergence i1s necessary, because & large amount of

calculation per cycle is required even for a structure of moderate slze.

A method of calculating stresses and deflectlions in the presence of plasticity
is given in reference 6, The method utilizes the rapidly convergent Newton-Raphson
procedure for solving nonlinear similtaneous equations. Agreemszut with test results
18 demonstrated. Reference 7 presents an approach basel or the use of fictitious

loads which appears to require a minimum amount of ccomutatlon per cycle.

A step-by-step application of the Maxwell-Mubir wcoulysils to the creep problem
i8 under development. This work is expected to provide a means of computing the
history of stress and deflection of a statically indeterminate structure subjected

to time dependent load and thermal inputs.
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COMPARISON WITH TIST RESULTS

Comparisons between analysis and test results obtained at the NASA and
during the DC-8 static test have been made. The NASA comparisons were ac-
complished in the period from June 1956 to September 1957. In all the numeri-
cal analysis, the midpoint idealization for shear panels was used.

The comparison for axial stresses measured in the cantilever clrcular
cylinder of Figure 1 has been mentioned. Figure 21 shows the analytical and
test results for frame bending moments and skin shear flows in the same cylinder.
The results of the Maxwell-Mohr analysis are in very close agreement also with
results obtained by the method of Hoff [8] , as reported in reference 9.

Figures 22, 23, 2k, and 25 show comparisons for a swept box tested at the
NASA, and reported in reference 10 . The box was of rectangular section and
hed a total of 32 stringers. In the figures the heavy solid lines indicale
1dealized stringers and bulkheads, while the dotted lines indicate bars obtained
by lumping skin in the chordwise direction. The analysis would not yleld sat-
igfactory epproximations for shear flows in the covers until these bars were
inserted. Polsson's ratio was accounted for in the triangular area at the root.
In the bending test, the characteristic peaking of axial stress at the reur spar

18 correctly predicted, as is the reversal of shear flow in the front spar web.

Fipgures 25 and 27 show comparisons for cylinders with cutouts subjected to
bending and torque respectively. The tests are described in references 11 and
12. As the figures show, more idealized stringers were inserted in the upper
side than in the lower, because the cutout at the top perturbs the stress field,
and requires finer lumping. Frame flexibility was taken into account. The
resulting agreement is excellent. However there 1s one shear panel at the
corner of the cutout which, in the bending case, does not have approximately a
uniform shear flow, as assumed. At one edge of this panel the shear flow, not
shown in the figure, is considerably higher than the vailue at the panel ceunter.
The only way to cover this concentration without going to a finer lumping 1s

with an empirical factor.

Pipure 28 shown a cowparison of measured and calculated stresses for a
ctation in the root region of the DC-8 ving. The analysis which yielded the

calculated resultec ic discussed in a later secetion.
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APPLICATTIONS

The method has been extensively applied in the analysis of Jet trancport
compotents; misslle parts, including fins and body components; and a supersonic

low aspect ratio wing. Many of these analyses included calculations of thermal

stress and deflection.

The wing-fuselage intersection was one of the primavy problems in the stress
analysis of the DC-8., The stress distribution was complicat~d by the existence
of wing sweep, an auxiliary spar, landing gesr cutouts in the lower part of the
fuselage behind the wing, & keel beanm runsing along the fuselaps canterline
below the floor, and other details. “he rroblem was apurcached by first making
an analysis of the entire region, incluiiuyz a Talrly <etrniled representation of
the fuselage, and a simplified idealizotion of the yios, Troa Lhe results of
this analysis, reaction forces between winzg end fuseloss wers determined., A
detalled wing root enalysis was then made, in which Zhi:ze reuction forces were

applied,

Figure 29 1s a diagram of the ideali:.-? ¢tyucture used in the detailed wing
analysis, showing the three spar constructi .., w1l %he auxiliary spar which
supports the main landing gear. The idealization had the correct sweep; dlhedral;
incidence and taper, both in plan-form and in thickness; and the airfoil sections
were accurate., However, twist was removed to flatten skin panels., There were
113 redundants and 300 element forces. The first complete calculation based on
this idealization was finished in March 1956. Had the job been done & 1little

later, panel warping and twist would have been considered.

The idealized structure for the tail-fuselage intersection is shown in
figure 30. The idealization included a portlion of the vertical tail, and a
stub of the all-movable horizontal surface. Some of the sections were stiffened
by frames like the one shown in section A-A; others had partial bulkheads. The
Joints of the idealized structure lay on the true contour, and panel woarping was
accounted for. The foreward and aft parts of the structure were analyzed scpa-
rately and then joined at section A-A. The first complete calculation was
finished in Geptember 1957.

Deflection influence cocfficients calculated for both the wing and the

Tucelope tuil cection were used in flulter analysie.



An analysis of the fuselage nose sectlon, including the cockpit enclosure,
was performed. The problem was complicated by the precence of cabin pressure,
and the fact that the pressure envelope was irregular because of the existence
of the unpressurized nose-wheel well below the floor. The members of the cock-
pit canopy elso caused added dlfficulties, because some of them were deslgned
to carry tension, bending moments about two axes, and torque, end they vere so
analyzed. The structure was analyzed in two separate sectlons, which were then
Joined. After Joining, the technique of virtual disconnecting loads was cuployed

to calculate the effect of door cutouts.

Figure 2a and 2b show the idealized structure for the Conway outboard pylone.
The structure incorporates a bottoming strut, shown in flgure 2a. The bottoming
of this strut, after a certain amount of load has been epplied, changes the stress

distrivution, and causes a nonlinearity, which was taken into account.

Figure 31 shows the structure of the JT-U ejector-reverser. The structure is
irregular; has large cutouts for the reversing buckets; incorporates members sub-
Jected to tension, bending about two axes, and torque; and is subjected to large
thermal gradients. The JT-3 and Conway ejectors are similar. Results from the
Ju-3 analysis became available within a period of two months. The same set-up
was then utilized in the analysis of the JT-U4 and Conway ejectors, which have
different slzes, shapes, and stiffnesses. The Conway ejector analysis was com-
pleted in final form ready for submission to the FAA in one month's time. Spring
constants for the ejectors were calculated eand shown in proof test to be correct

within the experimental error.

Numerous applications to low aspect ratio wing and missile structures have
been made, but these projects are classified and cannot be discussed. IHowever
the foregoing applications and experimental verifications have demonstrated that
the matrix equations and the corputer prosram arce sufficlently gereral to deal
with any linear discrete struclture. Missile and supersonic airplane structures
are no exceptions. Thus the low aspect ratlo multi-spar wing-fuselage structure
of fipure 32 can be analyzed, with all the detail showa and more, with Jolnts on
the true contour, for load and thermal stress. Deflections, and a deflectlion

influcnce matrlx useful Iin flutter analysis also cun be cutput.
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COlCLUSION

A procedure for structural analysis, comprising a matrix formlation of
the equilibrium and Maxwell-Mohr continuity ecquations, and an associated digital
computer program, has been developed. This procedure is applicable, in its
basic form, to any linear discrete structure. The method has been fully veri-
fied by comparison with test results, both in the leboratory and in proof test,

and it has been shown to be a practical analysis tool in numerous applications.

Procedures of this kind, several of which have appeared in the last few
years, represent a break-through in the art of stress analysis. These methods
permit the practical calculation of stresses in complicated shell structures
in rigorous accord with basic physical principals. This rigor is necessary,
because approximate methods widely used in the past can be in error by large
amounts. These errors are alleviated somewhat by stress redistribution above
the yield, but below the yield they represent stress concentrations which cause
premature fatigue failures. Above the yield premature static fallures can occur

in spite of the redistribution.

In the past, serious consequences of these errors have been avoided by
extensive testing. Some testing will always be necessary, but 1t is expensive,
even compared to the cost of operating a large digital computer. In the future,
'testing expense will Incrcase as alrframes become larger, and the additional
complication of thermal gradients 1s introduced. Therefore the need for rigorous

methods is increasing.

Dougias Alrcraft Company, Inc.,

Santa Monles, Calif., september 17, 1959,
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Fig. 15

Defining and derived coordinates
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Fig. 16 Warped sheaxr panel
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Fig. 17

Equilibrium of a warped shear panel
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Fig. 18 Cutting a alructure Ly the building method
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